
Eur. Phys. J. B 23, 365–372 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. We report a numerical study of the flexural modes of a plate using semi-classical analysis de-
veloped in the context of quantum systems. We first introduce the Clover billiard as a paradigm for a
system inside which rays exhibit stable and chaotic trajectories. The resulting phase space explored by
the ray trajectories is illustrated using the Poincare surface of section, and shows that it has both inte-
grable and chaotic regions. Examples of the stable and the unstable periodic orbits in the geometry are
presented. We numerically solve the biharmonic equation for the flexural vibrations of the Clover shaped
plate with clamped boundary conditions. The first few hundred eigenvalues and the eigenfunctions are
obtained using a boundary elements method. The Fourier transform of the eigenvalues show strong peaks
which correspond to ray periodic orbits. However, the peaks corresponding to the shortest stable periodic
orbits are not stronger than the peaks associated with unstable periodic orbits. We also perform statis-
tics on the obtained eigenvalues and the eigenfunctions. The eigenvalue spacing distribution P (s) shows a
strong peak and therefore deviates from both the Poisson and the Wigner distribution of random matrix
theory at small spacings because of the C4v symmetry of the Clover geometry. The density distribution of
the eigenfunctions is observed to agree with the Porter-Thomas distribution of random matrix theory.

PACS. 05.45.Mt Semiclassical chaos (“quantum chaos”) – 46.40.-f Vibrations and mechanical waves

1 Introduction

Sand on vibrating plates (Chladni plates) form interesting
nodal patterns. This system is often used to demonstrate
the influence of the shape in determining the eigenfunction
structure in wave systems. For example, the nodal pat-
terns for square and circular plates show the square and
circular symmetry of the plates respectively. The nodal
patterns are even more fascinating when a complicated
shape is used. Plates shaped as a violin back makes a
popular demonstration [1]. The scalar biharmonic equa-
tion which is an approximation of the complete vectorial
elasto-mechanical equation can be used to describe the
lowest eigenfunctions in case of thin plates [2]. Although
eigenfunctions for simple integrable shapes such as cir-
cular and square plates can be calculated under certain
boundary conditions, most (non-integrable) plate shapes
such as the violin or the stadium can be obtained by only
numerically solving the biharmonic equation.

Because analytical solutions generally do not exist,
several techniques have been developed to understand
the eigenvalues and eigenfunctions of quantum systems.
The two main approaches are (i) semiclassical techniques
and (ii) random matrix theory (RMT). Random matrix
theory describes the distribution of the eigenvalues for
typical systems. For instance, a striking result of this the-
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ory is that most systems with strongly chaotic classical
limit (and without symmetries) show a universal level
distribution [6,7]. Indeed, the spectrum of such a sys-
tem, provided it is time-reversal invariant, show statistical
properities similar to the eigenvalues of a set of random
matrices called the Gaussian orthogonal ensemble (GOE).
A corollary of this property is that spectrum statistics for
a “chaotic” system show level repulsion among neighbor-
ing eigenvalues. On the other hand, most systems with
integrable classical counterpart show Poisson statistics,
where there is no level repulsion.

The semiclassical framework allows us to understand
wave properties through the behavior of rays dynamics in
the classical limit. Indeed, interesting features of waves in
non-integrable shapes can then have satisfactory explana-
tions. For instance the scars phenomenon, which is the
concentration of amplitude along short unstable periodic
orbits of the corresponding classical system [4]. Earlier
work in quantum systems has also shown that the eigen-
values are related to the periodic orbits via trace formu-
las [5]. The same technique shows that the Fourier trans-
form of the eigenvalues of a wave system is directly related
to the length of periodic orbits.

These properties of the eigenvalues and eigenfunctions
which depend on the properties of the classical trajecto-
ries are expected to hold not only for quantum systems in
the semiclassical limit but in any wave system in which
the ray limit exhibits chaos. Experiments conducted on
a freely vibrating plate shaped as a Sinai-stadium which
exhibits ray chaos show complete agreement with GOE
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statistics [8]. Bogomolny and Hugues [9] further argue that
the trace formula for the vibration of plates should be sim-
ilar to that of quantum systems to within a phase factor.
They compared the Fourier transform of the eigenvalues
of a circular plate and a stadium shaped plate its periodic
orbits and found agreement.

However, the ray limits of most waves systems are nei-
ther fully chaotic nor integrable and contain islands of
integrability. Such systems are often referee to as mixed
systems and show a more rich phenomenon compared to
systems which are completely chaotic or integrable [10].
Although a universal description has not emerged, these
mixed systems show intermediate statistics between com-
pletely chaotic and integrable systems. Novel phenomena
such as chaos assisted tunneling can occur in this sys-
tem. The quartic oscillator is often used to study mixed
systems [10,11].

In this paper, we introduce the Clover geometry, which
is a billiard version of the quartic oscillator with two con-
cave focusing areas, as an example of a mixed system that
is suitable for plates. We investigate the ray dynamics by
numerically following the trajectories of a ray bouncing
inside this geometry. We characterize the phase space us-
ing the Poincare surface of section and also give examples
of short periodic orbits which may be important in deter-
mining the properties of the vibrations of a Clover plate
with the same dimensions. We then study the relevance of
the ray dynamics on properties of the flexural modes by
solving the biharmonic equation with clamped boundary
conditions.

A purpose of this work is also to investigate ambivalent
results obtained in experiments performed using quartz
plates with the Clover shape and free boundary conditions
by our group [12]. In this experimental study a Clover
shaped quartz plate with free boundary conditions was
used. The statistics of the eigenvalues was observed to be
intermediate between universal integrable (Poisson) and
GOE statistics thus fulfilling the expectation that the
presence of integrable regions would lead to deviations
from GOE as in the case for quantum systems. However,
the strongest peaks in the experimental data does not cor-
respond to the shortest stable periodic orbits. Thus the
weak agreement of the peaks with periodic orbits raises
many questions which we also investigate in this study of
the flexural modes of the Clover with clamped boundary
conditions.

2 The classical dynamics in the clover
geometry

The Clover geometry consisting of concave and convex
arcs is shown in Figure 1. The overall shape is similar
to an equipotential curve of the two-dimensional quar-
tic oscillator. Particles or rays launched inside the geom-
etry specularly reflect from the boundaries. The concave
boundaries are such that particles launched approximately
normal to the boundaries get focused. An example of such
a trajectory is shown in Figure 2a. On the other hand the
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Fig. 1. The Clover geometry is an example of a mixed system
containing both chaotic and integrable regions in its classical
phase space. (Xm = Ym = 1, r = 0.7461, R = 1.6.).

Fig. 2. (a) An example of a ray trajectory inside the Clover
geometry shown in Figure 1 which is stable and localized. (b)
A trajectory which is unstable.

trajectories that hit the convex side are often chaotic and
an example is shown in Figure 2b. The geometry is also
highly symmetric and belongs to the C4v point symmetry
group. Thus the Clover geometry has the same symmetry
as a square.

A convenient method of illustrating the phase space
explored by the ray trajectories is using the Poincare sur-
face of section (PSOS). The coordinates on the graph cor-
respond to the distance s along the perimeter where the
trajectory hits the boundary and p which is the sine of
the angle θ that the ray subtends with the normal to the
boundary. Thus s and p define a simplectic (area preserv-
ing) map on the Poincare section which associates the
(i + 1)th hit to the i-th hit. The reference point corre-
sponding to s = 0 is shown in Figure 1 and smax is the
perimeter of the geometry. It is sufficient to plot the PSOS
from s/smax = 0 to s/smax = 0.125 because the PSOS
is symmetric about s/smax = 0.125. The full PSOS can
be obtained by reflecting the plot about s/smax = 0.125,
s/smax = 0.25 and s/smax = 0.5.

The points resulting from launching 500 rays in ran-
dom directions after 200 bounces is shown in Figure 3 from
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Fig. 3. The Poincaré surface of section (PSOS) shows the
chaotic and regular regions. The points are obtained follow-
ing trajectories with 500 random initial conditions. The PSOS
correspond to a Clover geometry with r = 0.7 and R = 1.8.

s/smax = 0 to s/smax = 0.25. The random speckle points
correspond to the chaotic regions and the points along
arcs indicate regular regions. Both stable and unstable
periodic orbits correspond to a few points that equal the
number of bounces at the boundaries. While the points
corresponding to unstable orbits are isolated, the stable
periodic orbits have a regular region surrounding them.
Examples of the shortest stable, unstable and diffractive
periodic orbits and their length and stability are listed in
Table 1. The regular regions in this case correspond to
6.3% of the total area and therefore the system is essen-
tially chaotic. The fraction and nature of the integrable
regions and presence of periodic orbits can be smoothly
changed by tuning the various geometric parameters avail-
able. The PSOS shown in Figure 3 is fairly similar to that
obtained for different values of r andR provided the condi-
tion R > Xm and R > Ym is satisfied. In the limit R→∞
or if Xm = Ym = r, the geometry is completely chaotic.
For a special choice of r = 0.7461 and R = 1.6, most
of the integrable regions correspond to the two shortest
stable periodic orbits which are equal in length and are
shown in Table 1. The PSOS for these parameters are
plotted in Figure 4. Although other stable periodic orbits
in Table 1 are still present, they are surrounded by a very
small integrable region. Because the PSOS shown in Fig-
ure 4 is simpler, we use the corresponding parameters in
the simulation of the vibrations of the plate. In the ex-
perimental study reported elsewhere [12], the parameters
corresponded to the PSOS shown in Figure 3.

3 The wave equation and the boundary
conditions in plates

Next we describe the wave equation which we numeri-
cally solve for the vibration of thin isotropic plates and its

Table 1. The main stable, unstable and diffractive periodic or-
bits of the Clover geometry and their lengths. The dimensions
of the Clover plate are shown in Figure 1.

No Pattern Length, Lp (m) Type No Pattern Length, Lp (m) Type

1 1.012 diffractive 11 4.295 unstable

2 2.672 unstable 12 4.330 unstable

3 3.060 unstable 13 4.52 diffractive

4 3.20 diffractive 14 4.66 diffractive

5 3.31 diffractive 15 5.67 diffractive

6 3.49 diffractive 16 5.959 stable

7 3.779 unstable 17 7.339 stable

8 4.000 stable 18 7.56 diffractive

9 4.000 stable 19 7.56 diffractive

10 4.013 unstable 20 12.37 stable

Fig. 4. The Poincaré surface of section shows the chaotic and
regular regions. The points are obtained following trajectories
with 500 random initial conditions. The PSOS correspond to
a Clover geometry with r = 0.7461 and R = 1.6.

range of validity. In general, the vibration of an acoustic
system is very complicated. There are two types of modes
in plates: the longitudinal and flexural modes. Because
the flexural modes reflect specularly at the boundaries,
these modes are ideal to study the effect of periodic orbits
compared to the longitudinal modes which undergo mode
splitting at the boundaries. The biharmonic equation us-
ing the Kirchoff-Love model [2,3] for the amplitude h(x, y)
of the flexural modes in the limit of small h is:

(∆2 − k4)h(x, y) = 0, (1)
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where, ∆ is the two-dimensional Laplacian, and k is the
wave number.

This equation is obtained using the approximation
kd� 1, where d is the thickness of the plate. In plates
with a typical thickness of about 1 mm, this approxima-
tion appears to work for the first few hundred modes when
compared with experiments [13,12].

The dispersion relation to relate the wave number k to
the resonance frequency ω of the plate which is measured
experimentally is given by the Kirchoff-Love model as

ω = k2

√
Ed2

12(1− σ2)
(2)

where, E is Young’s modulus, ρ is the density, and σ
is Poisson’s ratio. The biharmonic equation generally
has two kinds of solutions, propagating modes and non-
propagating modes. The non-propagating modes have an
exponential form and can exist only near the boundary. A
simple derivation of this property of the biharmonic equa-
tion can be found in Appendix A. In the case of clamped
boundary conditions,

h = 0, and
∂h

∂n
= 0. (3)

The exponential non-propagating modes do not exist for
this boundary condition and all the modes are similar to
that of a Helmholtz equation for Dirichlet boundary condi-
tions. The only difference arises from the second condition
in equation (3).

Experimentally, it is not possible to obtain high qual-
ity factors with clamped boundary conditions, and there-
fore free boundary conditions are used [12]. In case of free
boundary conditions, the exponential non-propagating
modes can exist but are found to be a small fraction of
the modes [9]. To have the simplest possible situation,
clamped boundary conditions are used in finding the flex-
ural modes. Thus the possibility of exponential modes giv-
ing rise to peaks in the Fourier transform of the experi-
ments [12] can be also tested.

4 Eigenvalues and eigenfunctions
of the clover shaped plate

The resonances were obtained using a boundary element
method which has been used before to calculate the eigen-
values in quantum billiards [15,16]. However, the Green’s
function and the Green’s formula used for plates is differ-
ent than for quantum billiards because of the biharmonic
equation (Eq. (1)) and the differences in the boundary
conditions for plates (see Eq. (3)).

For plates, the boundary element method has been ap-
plied in engineering situations for the first few resonances.
The method is discussed briefly in Appendix B and is
described in detail in reference [14]. To test our numer-
ical implementation of the technique, we have obtained
the resonances of a square plate with unit sides and are
listed in Table 2. Excellent agreement is observed with the

Table 2. The wave number kn of the nth flexural mode of
a square plate with clamped boundary conditions using the
boundary integral equation method (BIE) compares well with
the values reported in reference [14]. The units correspond to
a plate with unit sides.

kn BIE NASA SP-160 relative error(%)

k1 5.999 5.999 0

k2 8.567 8.568 0.01

k3 10.403 10.405 0.02

k4 11.471 11.473 0.02

k5 11.498 11.500 0.02

k6 12.845 12.851 0.04

(a)

(c)

(e)

(b)

(d)

(f)
Fig. 5. Examples of numerically obtained eigenfunctions of a
square plate. (a) k = 5.999, (b) k = 8.567, (c) k = 26.894,
(d) k = 28.150, (e) k = 28.515, (f) k = 28.536. The units
correspond to a unit side.

first six eigenvalues reported in reference [14]. Examples
of the eigenfunctions of the square plate are shown in the
Figure 5.

We then obtained the first 281 eigenvalues for the
Clover with the dimensions shown in Figure 1 which are
below k = 42.38. To recognize degenerate modes because
of the C4v symmetry of the geometry, we perturbed the
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(a) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(b)

Fig. 6. Examples of numerically obtained eigenfunctions of
the clover billiard. (a) k = 9.982, (b) k = 12.239, (c) k =
15.656, (d) and (e) k = 17.318, (f) k = 17.817, (g) k = 18.866,
(h) k = 18.875, (i) k = 20.175, (j) k = 21.541, (k) k = 21.670,
(l)k = 23.210. The units correspond to Xm = 1.

Clover by changing Ym by 0.5%. The mean staircase func-
tion appropriate for the biharmonic equation [9] is:

N(k) =
S

4π
+ β

L

4π
+ c0, (4)

where S and L are the area and the perimeter of the Clover
plate respectively, and c0 is a constant which contains the
contributions from the curvature and the corners of the
boundary. For the clamped boundary condition, the value
of the coefficient is β ≈ −1.7627659 obtained in the semi-
classical limit [9]. The mean staircase function for the
clamped plate differs from that of the Helmholtz equation
with Dirichlet boundary condition where β = −1. Us-
ing the formula, 281 modes are anticipated for k = 42.40
which is in excellent agreement with the number of levels
obtained in the simulations. Thus we have confidence that
the eigenvalues were obtained accurately and no eigenval-
ues were missed.

Examples of the modes of the Clover are presented
in Figure 6. Although most modes appear chaotic, a few
of the modes, for example (d) and (e) appear to be lo-
calized between the focusing concave sides of the Clover.
The examples shown are also degenerate. When the Ym is
increased by 0.5% to split the degeneracy, the mode local-
ized in the longer vertical concave region shifts to a lower
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Fig. 7. The Fourier transform |F (l)|2 versus l for the Clover
plate. The vertical lines correspond to the stable, unstable and
diffractive periodic orbits that are plotted in Table 1. The
peaks corresponding to the shortest stable orbits are surpris-
ingly not the strongest and a great part of the peaks seem to
be associated to diffractive orbits. A few peaks seem not to be
explained by any peak, although it is possible that we missed
a few periodic orbits since we didn’t find a systematic way to
find them. On the other hand a few diffractive orbits, which
are not represented on the spectrum, correspond to no peak.
The results correspond to a Clover plate with the dimensions
shown in Figure 1.

eigenvalue, whereas the mode localized in the unperturbed
horizontal concave region decreases only very slightly.

5 Fourier transforms

To evaluate the influence of the periodic orbits on the
spectral properties of the Clover plate, we calculate the
square of the Fourier Transform |F (l)|2 as a function of
length l using the formula

|F (l)|2 = n+ 2
∑

i>j,1≤i,j≤n
cos((kj − ki)l). (5)

Where n represents the total number of resonances in
the spectrum and ki denotes the wavenumber of the ith
eigenvalue. According to theoretical expectations, |F (l)|2
should show strong peaks at values corresponding to the
length of the stable and unstable classical periodic orbits,
with stronger peaks corresponding to the least unstable
orbits.

The |F (l)|2 along with the length corresponding to the
shortest periodic orbits is shown in Figure 7. A number
of strong peaks are present in |F (l)|2. The position of the
peaks are unchanged if the 281 levels are split into two
halves and the Fourier transform for each half is calcu-
lated. Some of the peaks can be assigned to stable periodic
orbits of the Clover geometry (see also Tab. 1), but it is
remarkable that most of the peaks seem to correspond to
unstable and diffractive periodic orbits. However, there is
no obvious correlation between the strength of the peaks
and the stability of the corresponding orbits.
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Fig. 8. The spacing statistics P (s) shows level clustering due
to the C4v symmetry of the Clover plate (Xm = Ym = 1).

6 The statistics of the eigenvalues
and eigenfunctions

After unfolding of the calculated eigenvalues [7], we cal-
culated the distribution of nearest neighbor spacings P (s)
where s is the energy difference between the neighbor-
ing eigenvalues normalized by the mean energy spacing.
As can be seen in the Figure 8, the P (s) deviates from
the theoretical predictions corresponding to completely in-
tegrable (Poisson statistics) or chaotic systems (Wigner-
Dyson statistics) and shows a strong peak in the first bin
indicating level clustering due to the high number of de-
generacies present in the spectrum.

The degeneracies in the eigenvalues are a direct result
of the high spatial symmetry present in the Clover geome-
try. As mentioned in Section 2, the point symmetry group
of the Clover geometry shown in Figure 1 is C4v which
has five irreducible representations, one of which is dou-
ble degenerate [17,10]. The four non degenerate represen-
tations each contribute to 1/8th of the number of modes
and the double degenerate representation contribute to
the remaining half. Therefore, we expect from these sym-
metry arguments that the fraction of spacings s which
contribute to the peak in P (s) to be exactly 25% in the
absence of other kind of degeneracies. From our simula-
tions we find that a fraction of 24.5% of the total number
of spacings s contribute to the peak. Thus, although the
P (s) for a mixed system is expected to show intermedi-
ate distribution between Poisson and Wigner ones, in the
case of the Clover the distribution appear to have level
attraction due to the presence of significant number of
degeneracies.

To further quantitatively characterize the eigenvalues,
the spectral rigidity ∆3(L) is used to study the long
range correlations, where L is the length of the interval
over which the correlation is calculated. The definition of
∆3(L) can be found along with the universal theoretical
curves in reference [18]. The ∆3(L) curve shown in Fig-
ure 9 lies above the Poisson distribution for 1 < L < 9

2

1

0

∆ 3(
L)

3020100 L

Poisson
1 GOE
Clover

Fig. 9. The spectral rigidity ∆3(L) for the Clover plate with
C4v symmetry.
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Fig. 10. The P (h2) versus h2 compared to the Porter-Thomas
distribution from Random Matrix theory.

due to the high number of degeneracies in the spectra.
The ∆3(L) for L > 9 starts to saturate and lies between
the Poisson and GOE distributions.

Although the eigenvalues are sensitive to the spatial
symmetry, the eigenfunctions are not sensitive to the
symmetries. We used the probability distribution of the
squared amplitude of the eigenfunctions P (h2) to study
the properties of the eigenfunctions statistics. The result
is shown in Figure 10. The Porter-Thomas distribution is
also plotted for comparison:

P (h2) =
1√

2πh2
exp (−h

2

2
) · (6)

Where h2 is the squared amplitude of the eigenfunction
normalized to unit mean. This distribution can be derived
from RMT [20] and describes the case of chaotic systems
although deviation may exist in case of significant scar-
ing [19]. In our case the distribution was obtained after av-
eraging eigenfunctions between mode numbers 80 and 281.
The P (h2) for the Clover eigenfunctions are in agreement
with the Porter-Thomas formula. Thus the eigenfunctions
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for the Clover plate appear to be similar to that of chaotic
systems. To quantitatively check this we calculated the In-
verse Participation Ratio (IPR), which is defined as:

IPR = 〈h4〉 = 1 + c. (7)

From the numerical data we obtained c = 1.996 which is
very close to the value c = 2.0 for the Porter-Thomas dis-
tribution. Thus the presence of the stable periodic orbits
do not appear to significantly alter the P (h2) at least at
the mode numbers investigated.

7 Discussion

We thus find that the properties of the eigenvalues of the
biharmonic equation with clamped boundary conditions
are consistent with those obtained experimentally using a
quartz plate with free boundary conditions [12]. In the ex-
periments, the resonances of a quartz plate with the Clover
with C4v symmetry was first obtained between 52 kHz
and 352 kHz, and between 800 kHz to 1000 kHz which
corresponds with mode numbers 78 to 590, and with 1725
to 2373 respectively. We note that these estimates for the
mode number for the higher frequency range was obtained
using the three dimensional dispersion relation [12]. The
plate was then sanded to reduce the symmetry of the plate
to C2v and finally an asymmetric geometry. The Fourier
transform of the resonances of the experimental data show
peaks corresponding to the main periodic orbit, although
a rescaling of the experimental data is required to match
the peaks. Thus it appears that the periodic orbits can be
observed in both the experiments and the numerical simu-
lations. Although it must be also noted that the strongest
peak does not to the shortest stable periodic orbit.

The distributions for P (s) and ∆3(L) are also quanti-
tatively similar to that obtained in the experiments for the
Clover with C4v symmetry. This indicates that the bound-
ary conditions used, clamped in the simulations presented
in the paper, and free in the experiments do not signifi-
cantly change the statistical properties of the eigenvalues
of the Clover plate.

Thus the numerical results along with the supporting
experimental results leads us to conclude that direct evi-
dence of periodic orbits in the spectrum are difficult to ob-
tain reliably. It is possible that a better correspondence at
higher mode numbers can be made, but it must be noted
that in this limit the biharmonic equation ceases to be
a good approximation for the complete elasto-mechanical
equations that describe the vibration of plates as the wave-
length decreases and becomes comparable to thickness of
the plate.

We appreciate many fruitful discussions with Steve Tomsovic
and Kristian Schaadt. This work was supported by a grant
from Research Corporation.

Appendix A

The left hand side of equation (1) can be rewritten as:

(∆− k2)(∆ + k2)h(x, y) = 0. (A.1)

Let h be a solution of this equation. It can be written as:

h =
1

2k2
(k2 +∆)h+

1
2k2

(k2 −∆)h, (A.2)

and

h = h1 + h2. (A.3)

Where,

(∆+ k2)h1(x, y) = 0, (A.4)

and

(∆− k2)h2(x, y) = 0. (A.5)

Therefore, h(x, y) can be decomposed into a sum of the
solution of the Helmholtz equation h1(x, y) and an expo-
nential function h2(x, y).

Appendix B

The Green’s function G(r, r′) used in solving equation (1)
is given by:

Re[G(r, r′)] =
1

8k2
[N0(k|r − r′|) +

2
π
K0(k|r − r′|)] ,

Im[G(r, r′)] =
1

8k2
[−J0(k|r − r′|)], (B.1)

which is the solution of the equation:

(∆2 − k4)G(X,Y ) = −δ(X − Y ). (B.2)

The two dimensional problem of integrating the above
equation inside the Clover domain is translated to a one
dimensional problem at the boundary using the Green’s
formula. This technique is similar with the usual approach
for quantum billiard systems. However, we use a Green’s
formula appropriate for plates [14]:∫

[v(∆2 − k4)u− u(∆2 − k4)v]dA =∫
[v(Vnu)− (∂nv)(Mtu) + (Mtv)(∂nu)− (Vnv)u] ds

(B.3)

where Mt and Vn are boundary operators and can be
found in reference [14]. In this equation we substitute v
with Green’s function given in equation (B.1), and u with
the solution of the plate equation h(x, y) which is to be
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determined. The resulting equation using clamped bound-
ary condition (see Eq. (3)) and for a point X = (x0, y0)
inside the domain can be written as:

h(X) =
∫
∂D

[
G(X, l)Vnh(l)− ∂nG(X, l)Mth(l)

]
dl,

(B.4)

where n is the normal to the boundary at the point l, and
t is a unit vector tangential to the boundary, and

Mth(X) = ∆h(X) + (1− ν)∂2
t h(X)

Vnh(X) = ∂n∆h(X) + (1− ν)∂t∂n∂th(X). (B.5)

Because we have two boundary conditions, we also need
an equation for the first derivative of h. It is sufficient to
take the derivative of equation (B.4) in the direction nX :

∂nXh(X) =
∫
∂D

[
∂nXG(X, l)Vnh(l)

− ∂nX∂nG(X, l)Mth(l)
]
dl. (B.6)

Thus we obtain the value of the solution and its first
derivative at a point X inside the domain as an integral
function of the value of its derivatives on the boundary.
We want equations which only depends on the boundary.
Therefore we take the limit of equation (B.4) and equa-
tion (B.6) as X goes to the boundary.

In the case of clamped boundary condition, the limit
of the integral as X goes to the boundary equals the in-
tegral of the limit because the Green’s function and its
first derivative are not singular. Moreover, the left hand of
equation (B.4) and equation (B.6), after taking the limit,
is 0. Therefore we get

0 =
∫
∂D

[
G(X, l)Vnh(l)− ∂nG(X, l)Mth(l)

]
dl

0 =
∫
∂D

[
∂nXG(X, l)Vnh(l)− ∂nX∂nG(X, l)Mth(l)

]
dl

(B.7)

where X is now a point of the boundary, and nX the
normal to the boundary at this point.

To evaluate the integrals, the boundary is discretized
into N segments. The source points are labeled lj, and the
field point is li. These points are now on the boundary and
the index i and j run from 1 to N . The unknown variables
of these discrete equations are the discrete values of the
unknown functions Mth(li) and Vnh(li) at the finite set of
points li:

Mi = Mth(li)
Vi = Vnh(li). (B.8)

Now we discretize equation (B.7):

0 =
N∑
j=1

α1(li, lj)Mj − α2(li, lj)Vj

0 =
N∑
j=1

β1(li, lj)Mj − β2(li, lj)Vj . (B.9)

Where α1,2 and β1,2 are discrete values of the Green’s
function and its derivatives at points (li, lj) which are
known.

The determinant of this system of equations, which is
a function of the wave number k, must be equal to zero
for a solution to exist:∣∣∣∣∣α1(li, lj)(k) α2(li, lj)(k)

β1(li, lj)(k) β2(li, lj)(k)

∣∣∣∣∣ = 0.

This determinant is checked for its minima as a function
of k. The k corresponding to the minima are the reso-
nances of the plate.

The eigenfunctions corresponding to a resonance can
be calculated by extending the method further. By solv-
ing the system of equations (Eq. (B.9)) for a given reso-
nance k, we get a set of discrete values of the derivatives of
the solution at the boundary Mth(li) and Vnh(li). By in-
troducing these values in the Green’s (B.4) formula we can
obtain the solution h(x, y) everywhere inside the domain.
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